Nearest and farthest points in spaces of curvature bounded below

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest and farthest points in spaces of curvature bounded below

Let A be a nonempty closed subset (resp. nonempty bounded closed subset) of a metric space (X, d) and x ∈ X \ A. The nearest point problem (resp. the farthest point problem) w.r.t. x considered here is to find a point a0 ∈ A such that d(x, a0) = inf{d(x, a) : a ∈ A} (resp. d(x, a0) = sup{d(x, a) : a ∈ A}). We study the well posedness of nearest point problems and farthest point problems in geod...

متن کامل

w_0-Nearest Points and w_0-Farthest Point in Normed Linear Spaces

w0-Nearest Points and w0-Farthest Point in Normed Linear Spaces

متن کامل

Barycenters in Alexandrov spaces of curvature bounded below

We investigate barycenters of probability measures on proper Alexandrov spaces of curvature bounded below, and show that they enjoy several properties relevant to or different from those in metric spaces of curvature bounded above. We prove the reverse variance inequality, and show that the push forward of a measure to the tangent cone at its barycenter has the flat support.

متن کامل

Local Cut Points and Metric Measure Spaces with Ricci Curvature Bounded Below

A local cut point is by definition a point that disconnects its sufficiently small neighborhood. We show that there exists an upper bound for the degree of a local cut point in a metric measure space satisfying the generalized Bishop–Gromov inequality. As a corollary, we obtain an upper bound for the number of ends of such a space. We also obtain some obstruction conditions for the existence of...

متن کامل

Heat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below

In this paper the comparison result for the heat kernel on Riemannian manifolds with lower Ricci curvature bound by Cheeger and Yau [CY81] is extended to locally compact path metric spaces (X, d) with lower curvature bound in the sense of Alexandrov and with sufficiently fast asymptotic decay of the volume of small geodesic balls. As corollaries we recover Varadhan’s short time asymptotic formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2010

ISSN: 0021-9045

DOI: 10.1016/j.jat.2010.02.007